(3-4x)(3+4x)=x^2-9(x-1)

Simple and best practice solution for (3-4x)(3+4x)=x^2-9(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3-4x)(3+4x)=x^2-9(x-1) equation:



(3-4x)(3+4x)=x^2-9(x-1)
We move all terms to the left:
(3-4x)(3+4x)-(x^2-9(x-1))=0
We add all the numbers together, and all the variables
(-4x+3)(4x+3)-(x^2-9(x-1))=0
We multiply parentheses ..
(-16x^2-12x+12x+9)-(x^2-9(x-1))=0
We calculate terms in parentheses: -(x^2-9(x-1)), so:
x^2-9(x-1)
We multiply parentheses
x^2-9x+9
Back to the equation:
-(x^2-9x+9)
We get rid of parentheses
-16x^2-x^2-12x+12x+9x+9-9=0
We add all the numbers together, and all the variables
-17x^2+9x=0
a = -17; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-17)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-17}=\frac{-18}{-34} =9/17 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-17}=\frac{0}{-34} =0 $

See similar equations:

| -4x+3=4x+3 | | 8t-5=6 | | 2.3x-1+8=0.9 | | 54=4m—-18 | | 8c-7(c-3)+4=-19 | | -5(8m+1)-1=-126 | | 5(3-x)+2(3-x)=1 | | 3(×-1)+2=x+9 | | -73=f/8-81 | | 18y-126+20y=6-70 | | -26=-t*66 | | 8+5d=43 | | -6x-10=6+2x | | 9x+43=90 | | 8/9x=31 | | -355=7v+6(5+8v) | | 4x(x+)=2x+10 | | 21-3b=6 | | 9x+14+29=90 | | 7c÷12=-4c+78 | | 2/5w=111/5 | | 31.00=c+15*1.60 | | F=7/5(n-53) | | -(4x+2)-(-3x-8)=-2 | | 8t-1+t=26 | | 247=135x+16 | | 3(c/15)-1=-31 | | 9x^2-34x-19=0 | | f/3=-4 | | 2(1-6p)=86 | | -4(6-9r)=12+4(11r+7) | | 2.4-(m/2)=10 |

Equations solver categories